Как начиналась геометрия

Греция: длина без ширины

Древние греки подошли к вопросу более строго. В «Началах» Евклида возникают определения (впрочем, зачастую носящие скорее описательный характер — на них, например, не ссылаются далее) линии, прямой линии, точки. Выглядят они, мягко говоря, несовременно:

Определение 1.1. Точка — это то, часть чего есть ничто.

Определение 1.2. Линия — это длина без ширины.

Определение 1.3. Концы линий — это точки.

Определение 1.4. Прямая линия лежит равномерно по отношению к точкам на ней. (Или: Прямая линия есть та, которая равно лежит на всех своих точках.)

Первое из этих определений можно при желании трактовать в духе теории множеств, третье, по-видимому, намекает, что линии у нас априори конечные. Второе можно трактовать описательно, что касается четвертого, то мнения сильно расходятся.

Несколько иная, хотя местами и похожая ситуация возникает в труде, традиционно приписываемом Герону, — «Определение понятий геометрии» (но в статье W. R. Knorr, ‘Arithmêtikê stoicheiôsis’: on Diophantus and Hero of Alexandria, Historia Math. 20 (2) (1993), 180–192 приводятся аргументы в пользу принадлежности его Диофанту):

Последнее определение довольно явно отсылает нас к кратчайшему расстоянию между двумя точками.

В наиболее известных трудах древних греков рассматриваются главным образом прямые линии. Хотя в некоторых трудах встречаются и иные известные им линии.

Аполлоний Пергский, один из трех великих геометров Античности (вместе с Евклидом и Архимедом), занимался коническими сечениями. Об их существовании знали и до него, однако именно он дал им названия, закрепившиеся в науке, — эллипс, гипербола, парабола.

Приведем и несколько других примеров, известных грекам.

Циссоида Диокла:

Конхоида Никомеда:

Знаменитая архимедова спираль:

Математики Возрождения

После заката эллинической культуры математика Европы пережила несколько веков стагнации, пока новая плеяда умов не вдохнула в эту науку новые идеи. Назвать выдающихся математиков того времени намного сложнее, потому что их оказалось значительно больше, чем в Древней Греции.

Леонардо Пизанский

В европейской науке более известен как Фибоначчи. Жил и умер в городе Пиза (последняя треть XII — первая четверть XIII веков). Его отец, известный торговец, страстно хотел, чтобы сын продолжил семейное дело, поэтому брал юношу в далёкие поездки на Ближний Восток и даже в Северную Индию.

Здесь Леонардо познакомился с индийской и арабской математическими школами, которые в эти века значительно превосходили уровень европейской математики.

По возвращению в Европу написал ряд научных трудов, в том числе главный, по математике — «Книга абака». Леонардо ввёл в европейскую математику привычные нам арабские цифры, а также не менее привычную десятичную систему исчисления. Как истинный сын торговца, юноша внёс в математику понятие отрицательных чисел, называя их «долгом». Разработал основы бухгалтерского учёта.

Исаак Ньютон (1642 — 1727 гг.)

Выдающийся англичанин, классик физики, математики и астрономии. Среди нескольких его основных трудов есть один, касающийся математики, — «Математические начала натуральной философии». Это «Библия» классической механики, в которой приведены формулы для описания движения всех тел во Вселенной. Кроме того, Ньютон заложил основы дифференциального и интегрального исчислений.

Готфрид Лейбниц (1646 — 1716 гг.)

Этот немецкий учёный жил и творил в одно время с Ньютоном, и, независимо от последнего, создал основы математического анализа, опирающиеся на понятия бесконечно малых величин. Лейбниц представлял себе матанализ алгебраически, а не кинематически, как это делал Ньютон.

Леонард Эйлер (1707 — 1783 гг.)

В специальной литературе нередко можно встретить утверждение, что этот швейцарец является самым выдающимся математиком всех времён. Между прочим, он много лет прожил в России, в Петербурге, и даже многие свои работы написал на русском языке, который выучил в совершенстве всего за год!

Трудно найти отрасль математики, в которой Эйлер не написал бы хоть одну важную работу. Он впервые создал «математический оркестр», увязав множество доселе разрозненных дисциплин в единую систему математики. Язык современной математики нельзя представить без таких понятий, как «углы Эйлера» или «формула Эйлера». Некоторые математические вопросы до сегодняшнего дня преподают студентам «по Эйлеру».

Рене Декарт (1596 — 1650 гг.)

Когда мы говорили, что Ньютон и Лейбниц разработали основы математического анализа, справедливо было бы вспомнить, что их изыскания базировались не на пустом месте. Начальные идеи были известны ещё до работ этих учёных, а разработал их почти легендарный француз, Рене Декарт.

Современные математики считают его зачинателем аналитической геометрии. Он впервые ввёл понятия функции и переменной величины. С одним из достижений Декарта сталкивался практически каждый человек. Это система координат, известные всем шкалы «икс» и «игрек». Помимо этого, именно Рене ввёл в математику понятия гиперболы и параболы, овала и листа.

Жозеф Луи Лагранж (1736 — 1813 гг.)

В XVIII веке, наряду с Эйлером, этот француз считался лучшим европейским математиком. Был особенно силён в области математического синтеза. Разработал и доказал несколько важнейших теорем, в том числе «формулу конечных приращений».

Пьер-Симон Лаплас (1749 — 1827 гг.)

Много работал как астроном, но в математике известен как один из тех, кто разрабатывал теорию вероятностей. Специалистам известны уравнения его имени и преобразование Лапласа

Ввёл важное понятие математического ожидания

Иоганн Гаусс (1777 — 1855 гг.)

Мы говорили уже об отце математики — Пифагоре. А этого немца нередко называют королём математики. Гаусс написал ряд важнейших работ во многих отраслях этой науки, которые до сих пор остаются базовыми, классическими. Много работал в математическом анализе, в неэвклидовой геометрии, открыл так называемые «гауссовые числа», разработал модель комплексных чисел.

Российские математики

Не меньший вклад в науку сделали российские математики. Многие открытия лучших умов России получили известность далеко за пределами страны. Самые серьезные достижения русской математической науки пришлись на вторую половину 19 века.

Николай Лобачевский

Одаренный русский ученый, сумевший открыть отдельное направление в геометрии, получившее название «неэвклидовой» или геометрии Лобачевского.

Ему удалось получить положительные результаты в решении тонких теорем о тригонометрических рядах, определить признаки сходимости рядов.

Публикации ученого в области алгебры, физики, астрономии широко получили признание в научном мире.

Софья Ковалевская

Является первой в России женщиной, получившей звание профессора математики. Основной сферой исследования Ковалевской была небесная механика и математическая физика.

Талантливой женщине-ученому удалось найти третий вариант решения задачи о вращении тел вокруг неподвижной точки. Софья Васильевна занималась поиском решения задачи Лапласа о равновесии колец Сатурна. Решила одну из задач Коши. В 1889 году Ковалевская была награждена престижной премией Парижской  академии за изучение вращения тяжелого несимметричного волчка. 

Андрей Колмогоров

Знаменитый русский ученый, сделавший весомый вклад в разработку современной теории вероятности. Работы исследователя, применяющие научный подход к художественной литературе, известны на весь мир.

Колмогоров является первым русским ученым-кибернетиком. Ему принадлежит множество значимых открытий в геометрии, математической логике, теории меры и других областях математики.

Архимед

Как и многие другие великие математики древности, этот ученый издревнегреческого города Сиракузы, был талантлив во многих областях.

Ему принадлежат ключевые открытия в геометрии. Архимед является создателем формулы вычисления объема и площади шара. Идеи гениального ученого стали основой интегральных исчислений, разработанных позже.

Другие открытия математика:

  • число Пи, представляющее собой отношение диаметра окружности к длине;
  • полуправильные многогранники;
  • геометрический метод решения кубических уравнений.

Ученый является родоначальником механики и гидростатики. Кроме математики и физики, Архимед активно занимался оптикой и астрономией.

Это полезно знать

Слово «математика» произошло от греческого «mathema», что означает «учение», «наука», «исследование».

Всемирный день математики отмечается 6 марта.

В тайском языке число 5 произносится как «ха», и некоторые тайцы вместо того, чтобы напечатать «ха-ха-ха», набирают на клавиатуре сленг — 555.

0 — единственное число, которое невозможно отобразить с помощью римских цифр. Как же древние римляне обходились без него? Вместо цифры они использовали слово «nulla».

В числе 9 есть особая магия. Умножьте любое число на 9, затем складывайте все цифры в этом числе, пока не получится однозначное число, и полученная сумма всегда будет равна 9ти.

Как проверить, можно ли разделить число на 3? Для этого сложите все цифры этого числа. Если то, что получилось, делится на 3, то же самое касается и первоначального числа.

Знак равенства (=) изобрел английский математик Роберт Рекорд в 16 веке. Ему надоело каждый раз писать слово «равно» в уравнениях.

Название популярного поисковика Гугл произошло от слова «гугол». Это слово обозначает число, а именно единицу со ста нолями.

Из всех форм с одинаковым периметром у окружности самая большая площадь. Также из всех форм с одинаковой площадью у окружности наименьший периметр.

Что такое последовательность Фибоначчи? Это такой порядок чисел, где при сложении двух предыдущих получается следующее за ними. Природа изобилует примерами с этой последовательностью. Семена многих растений расположены по спирали, идущей из центра к внешним краям. Например, так расположены семена подсолнуха, при этом они подражают этой последовательности.

Что такое число-перевертень? Это число, которое можно прочесть одинаково с начала и с конца: например, 12421.

1089 x 9 = 9801.

В следующем уравнении число 100 получается из арифметической операции стоящих по порядку цифр:
12+3-4+5+67+8+9=100.

Необыкновенное число 7

Интересен факт из математики, касающийся числа 7 — единственное число в цепочке чисел от 1 до 10, которое нельзя ни умножить, ни разделить так, чтобы оно осталось внутри этой цепочки. Например, можно умножить 5 на 2 и получить 10. 8 и 6 делятся на 2.

Существует семь смертных грехов, семь чудес света, столько же дней недели, цветов радуги, гномов, морей и столпов мудрости. Как видите, семь — это еще и число, прочно связанное с человеческой культурой.

На игральной кости сумма точек на противоположных сторонах всегда равна семи.

0,999999… = 1

Этого не может быть, но это так. Вот доказательство.

Если 10xN = 9,9999…,
Тогда N = 0,9999…
При вычитании N из 10N остается 9N=9.
Тогда N=1. Но нам уже известно, что N также равно 0,9999…
Получается, что 1=0,9999…

Цикады пользуются стратегией неделимых чисел в своей эволюции

Период подземного созревания у цикад составляет 13 или 17 лет. Как 13, так и 17 являются неделимыми числами. Предположительно, эти насекомые реже вступали в контакт с хищниками, периоды жизни которых составляли делимое число лет.

Постоянная Капрекара

Возьмите любое четырехзначное число, проделайте следующие шаги, и в итоге получится 6174.

Единственное условие заключается в том, чтобы в этом числе были по крайней мере две разные цифры. Расставьте цифры этого числа сначала по убыванию, а затем по возрастанию. Получится два числа. Вычтите меньшее число из большего. Повторите с полученным результатом это действие еще раз.

Если вы будете продолжать совершать эти два действия — расстановка цифр по порядку возрастания и убывания в каждом полученном результате, а затем вычитать меньшее число из большего, — то в итоге вы придете к числу 6174. Если же после этого вы будете проделывать все те же операции, то число 6174 будет получаться каждый раз.

«Начала»

Повторюсь эта книга уникальна. Более двух тысяч лет она была главным и практически единственным руководством по геометрии для учёных как западного, так и восточного мира. Ещё в конце XIX столетия во многих английских школах геометрию изучали по адаптированному изданию «Начал», и вряд ли можно найти более выразительное свидетельство популярности. В этом смысле конкурировать с «Началами» могут разве что Библия и Евангелие.

Но, в отличие от них, основа «Начал» строгая и жёсткая логика, точнее, Евклид всё время стремится к таковой. Можно полагать, что он был последователем Платона и Аристотеля. А Платон, как вы помните, требовал строго дедуктивного построения математики.

В фундаменте аксиомы, основные положения, принимаемые без доказательства, а далее всё должно быть строго логично выведено из аксиом. Этот идеал и пытается осуществить Евклид.

С современных позиций буквально вся его аксиоматика неудовлетворительна. Но это легко заявлять сейчас, после 25 веков исследований. А в своё время логика Евклида оставляла совершенно подавляющее впечатление. Во всяком случае, не следует забывать, что сама логическая схема её стала с тех пор канонической для построения любого раздела математики.

Попытки изложить геометрию на основе аксиоматического метода были и до Евклида. Но можно уверенно заключить, что работа Евклида была наиболее удачной. Свидетельство тому необычайная известность его книги уже в древнем мире, благодаря которой она и дошла до нас.

«Начала» блестяще написаны, в них чувствуется мастер своего дела, тонкий учёный и великолепный педагог. Поэтому поголовное поклонение математиков Евклиду и его «Началам» понятно и оправданно. Добавим ещё, что эта книга обратила в математическую веру несколько десятков молодых людей, ставших впоследствии крупнейшими математиками мира.

Влияние Евклида было поразительно во все века во всех краях света. Вот, например, в каких восхищённых тонах говорил о «Началах» один из виднейших математиков эпохи Возрождения Кардано: «Неоспоримая крепость их догматов и их совершенство настолько абсолютны, что по-видимому, только тот способен отличать в сложных вопросах геометрии истинное от ложного, кто усвоил Евклида».

А вот слова неизвестного английского геометра (это уже середина XIX века): «Никогда не было системы геометрии, которая в существенных чертах отличалась бы от плана Евклида; и до тех пор, пока я не увижу этого собственными глазами, я не поверю, что такая система может существовать».

Приведу одно яркое свидетельство влияния «Начал» буквально на все области мышления. Один из крупнейших в истории Западного мира философов, замечательный не только как философ, но и как человек Спиноза весь план своего основного сочинения «Этика» целиком заимствовал у Евклида.

И, наконец, для тех, кого не убеждает пример Спинозы, я приберёг Ньютона. Его основополагающий труд «Математические начала натуральной философии» копирует не только заглавие книги Евклида, но и её построение: великий Ньютон тоже выводит все свои результаты из набора аксиом!

Лента Мебиуса

Это одна из самых необыкновенных трехмерных фигур в геометрии, которую легко сделать в домашних условиях. Для этого достаточно взять бумажную полоску, ширина которой в 5-6 раз меньше ее длины, и, перекрутив один из концов на 180°, склеить их между собой.

Если все сделано правильно, то можно проверить самостоятельно ее удивительные свойства:

  • Наличие только одной стороны (без разделения на внутреннюю и внешнюю). Это легко проверить, если попробовать закрасить карандашом одну из ее сторон. Независимо от того, в каком месте и направлении будет начато закрашивание, в результате вся лента будет закрашена одним цветом.
  • Непрерывность: если вести ручкой линию вдоль всей поверхности, ее конец соединится с начальной точкой без пересечения границ поверхности.
  • Двухмерность (связность): при разрезании ленты Мебиуса вдоль она остается цельной, просто получаются новые фигуры (к примеру, при разрезании надвое получится одно кольцо большего размера).
  • Отсутствие ориентированности. Путешествие по такой ленте Мебиуса всегда будет бесконечным, оно приведет к начальной точке пути, только в зеркальном отображении.

Лента Мебиуса широко используется в промышленности и науке (в ленточных конвейерах, матричных принтерах, механизмах для заточки и пр.). Кроме этого существует научная гипотеза, по которой сама Вселенная также представляет собой ленту Мебиуса невероятных размеров.

История развития геометрии Интересные факты. История развития геометрии

Самые первые понятия в геометрии люди приобрели еще в глубокой древности. Возникала необходимость определять площади участков земли, объемы различных сосудов и помещений и другие практические потребности. Свое начало история развития геометрии, как науки, берет в Древнем Египте около 4 тысяч лет назад. Затем знания египтян позаимствовали древние греки, которые применяли их преимущественно для того, чтобы измерять площади земельных участков. Именно с Древней Греции берет свое начало история возникновения геометрии, как науки. Древнегреческое слово «геометрия» переводится, как «землемерие».

Греческие ученые на основе открытия множества геометрических свойств смогли создать стройную систему знаний по геометрии. В основу геометрической науки были положены простейшие геометрические свойства, взятые из опыта. Остальные положения науки выводились из простейших геометрических свойств с помощью рассуждений. Вся эта система была опубликована в завершенном виде в «Началах» Евклида около 300 года до нашей эры, где он изложил не только теоретическую геометрию, но и основы теоретической арифметики. С этого источника также начинается и история развития математики.

Однако в труде Евклида ничего не сказано ни об измерении объема, ни о поверхности шара, ни об отношении длины круга к его диаметру (хотя присутствует теорема о площади круга). История развития геометрии получила продолжение в середине III века до нашей эры благодаря великому Архимеду, который смог вычислит число Пи, а также смог определить способы вычисления поверхности шара. Архимед для решения упомянутых задач применил методы, которые в дальнейшем легли в основу методов высшей математики. С их помощью он уже мог решать трудные практические задачи геометрии и механики, которые были важны для мореплавания и для строительного дела. В частности, он нашел способы определять центры тяжести и объемы многих физических тел и смог изучить вопросы равновесия тел различной формы при погружении в жидкость.

Древнегреческие ученые провели исследования свойств различных геометрических линий, важных для теории науки и практических применений. Аполлоний во II веке до нашей эры сделал много важных открытии по теории конических сечений, которые оставались непревзойденными на протяжении следующих восемнадцати веков. Апполоний применил метод координат для изучения конических сечений. Этот метод в дальнейшем смогли развить только в XVII веке ученые Ферма и Декарт. Но они применяли этот метод только для изучения плоских линий. И только в 1748 году русский академик Эйлер смог применить этот метод для изучения кривых поверхностей.

Система, разработанная Евклидом, считалась непреложной более двух тысяч лет. Однако в дальнейшем история развития геометрии получила неожиданный поворот, когда в 1826 году гениальный русский математик Н.И. Лобачевский смог создать совершенно новую геометрическую систему. Фактически основные положения его системы отличаются от положений геометрии Евклида только в одном пункте, но именно из этого пункта вытекают основные особенности системы Лобачевского. Это положение о том, что сумма углов треугольника в геометрии Лобачевского всегда меньше 180 градусов. На первый взгляд может показаться, что это утверждение неверно, однако при маленьких размерах треугольников современные средства измерения не дают правильно измерить сумму его углов.

Дальнейшая история развития геометрии доказала правильность гениальных идей Лобачевского и показала, что система Евклида просто неспособна решить многие вопросы астрономии и физики, где математики имеют дело с фигурами практически бесконечных размеров. Именно с трудами Лобачевского уже связано дальнейшее развитие геометрии, а с ней и высшей математики и астрономии.

Интересные факты о стереометрии. Изображение пространственных объектов

В планиметрии мы изучали свойства плоских фигур. Хотя в природе их не найдешь – любой объект объёмный. Почему же мы так много времени уделили плоским фигурам, которых не существует в окружающем мире?

Есть природа, а есть модели природных объектов, которые у нас получается исследовать – отрезки, углы, фигуры. Они, в свою очередь, являются элементами объёмных тел. Изучив подробно свойства плоских фигур, теперь мы сможем применять полученные знания для исследования тел в пространстве.

Кирпич имеет форму параллелепипеда, а его грани – форму прямоугольника. Бревно имеет форму цилиндра, а спил (сечение) – форму круга, если спил сделан перпендикулярно оси бревна, и эллипса, если под углом.

То есть переход от планиметрии к стереометрии – это расширение математической модели, а не замена одной на другую.

В планиметрии с изображением фигур было все просто: лист бумаги, по сути, представлял плоскость, и изобразить на нём плоскую фигуру (например, квадрат со стороной а) не составляло труда.

В стереометрии мы будем объёмные фигуры изображать на плоскости, что потребует от нас определенных навыков.

Особенности нашего зрения

Мы привыкли доверять своим глазам и не задаемся вопросом, почему один и тот же объект вблизи выглядит крупнее, чем вдали? Или почему разные по величине предметы порой кажутся одного размера? Механизмы зрения довольно сложны, однако некоторые его особенности можно объяснить на основе геометрических представлений.

Всякий предмет имеет линейные размеры: длину, ширину и высоту. Но как только он попадает в наше поле зрения, то приобретает еще один размер – угловой. Давайте разберемся, что это означает. Когда мы смотрим на предмет, то через каждую его точку можно провести от глаза луч, называемый лучом зрения. Понятно, что их будет бесконечно много. Любые два луча зрения образуют угол зрения (см. рис. 1).

Рис. 1. Угол зрения

Тот угол зрения, под которым предмет виден целиком, и принято называть угловым размером предмета. Как и всякий плоский угол, он измеряется в градусах, минутах, секундах или в радианах.

Угловой размер предмета – величина не постоянная и зависит от расстояния предмета от глаза: чем предмет дальше, тем меньше угол зрения, под которым он виден.

Чтобы понять причину этого явления, вспомним, что на сетчатке глаза изображение предмета получается обратным и уменьшенным. При удалении предмета его изображение на сетчатке становится меньше, поэтому он и кажется нам уменьшающимся (см. рис. 2). При сокращении расстояния изображение, напротив, увеличивается, и предмет кажется увеличивающимся (см. рис. 3).

Рис. 2. Предмет кажется уменьшающимся при его удалении

Рис. 3. Предмет кажется увеличивающимся при его приближении

Теперь легко объяснить, почему две «убегающие» вдаль параллельные линии (железнодорожные рельсы, края прямолинейного шоссе) кажутся «сходящимися» в одной точке (см. рис. 4). Такое же впечатление создают ряды телеграфных столбов или деревьев вдоль дороги. Это лишь иллюзия, которая возникает из-за видимого уменьшения расстояния между прямыми по мере их удаления.

Рис. 4. Железнодорожные рельсы кажутся «сходящимися» в одной точке

Часто приходится сталкиваться и с другой ситуацией. Если рассматривать предметы одинаковой формы, но разных линейных размеров под одним и тем же углом зрения, то кажется, что их размеры равны. Поэтому мы можем закрыть монеткой Луну или Солнце.

А при полном солнечном затмении лунный диск в точности заслоняет солнечный (см. рис. 5). В этот момент наблюдатель с Земли видит оба небесных тела под одним углом зрения.

Рис. 5. При полном солнечном затмении лунный диск в точности заслоняет солнечный

Увидеть такое уникальное явление было бы невозможно, если бы линейные размеры Солнца и Луны, а также расстояния от них до Земли не состояли в определенной математической зависимости: диаметры Солнца и Луны (и) и расстояния от этих тел до Земли (и) связаны пропорцией:

Исходя из указанных особенностей нашего зрения, важно научиться правильно изображать объекты, чтобы избежать оптического обмана и искажения восприятия. Работая с такими фигурами, необходимо научиться изображать их на бумаге

Для этого нужно следовать двум соображениям:

Работая с такими фигурами, необходимо научиться изображать их на бумаге. Для этого нужно следовать двум соображениям:

  1. При изображении дли́ны отрезков и величи́ны углов могут меняться, т.е. длинный отрезок вполне может быть изображен коротким, а прямой угол острым или тупым;
  2. Параллельность отрезков сохраняется всегда. Длины параллельных отрезков меняются в одинаковой степени, т.е. параллельные равные отрезки всегда будут изображены тоже как параллельные и равные.

Литература

  • Александров А. Д., Нецветаев Н. Ю.
    Геометрия, — Наука, Москва, 1990.
  • Александров П. С.
    Что такое неэвклидова геометрия, — УРСС, Москва, 2007.
  • Делоне Б. Н.
    Элементарное доказательство непротиворечивости планиметрии Лобачевского, — Гостехиздат, Москва, 1956.
  • Иовлев Н. Н.
    «Введение в элементарную геометрию и тригонометрию Лобачевского» . — М.-Л.: Гиз., 1930. — С. 67.
  • Клейн Ф.
    «Неевклидова геометрия» . — М.-Л.: ОНТИ, 1936. — С. 356.
  • Попов А. Г.

Лобачевского геометрия — геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы о параллельных, которая заменяется на аксиому о параллельных Лобачевского.
Евклидова аксиома о параллельных гласит: через точку, не лежащую на данной прямой, проходит только одна прямая, лежащая с данной прямой в одной плоскости и не пересекающая её. В Лобачевского геометрия вместо неё принимается следующая аксиома: через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её. Казалось бы, эта аксиома противоречит чрезвычайно привычным представлениям. Тем не менее как эта аксиома, так и вся Лобачевского геометрия имеет вполне реальный смысл. Лобачевского геометрия была создана и развита Н. И. Лобачевским, который впервые сообщил о ней в 1826. Лобачевского геометрия называется неевклидовой геометрией, хотя обычно термину «неевклидова геометрия» придают более широкий смысл, включая сюда и др. теории, возникшие вслед за Лобачевского геометрия и также основанные на изменении основных посылок евклидовой геометрии. Лобачевского геометрия называется специально гиперболической неевклидовой геометрией (в противоположность эллиптической геометрии Римана).

Лобачевского геометрия представляет теорию, богатую содержанием и имеющую применение как в математике, так и в физике. Историческое её значение состоит в том, что её построением Лобачевский показал возможность геометрии, отличной от евклидовой, что знаменовало новую эпоху в развитии геометрии и математики вообще (см. Геометрия). С современной точки зрения можно дать, например, следующее определение Лобачевского геометрия на плоскости: она есть не что иное, как геометрия внутри круга на обычной (евклидовой) плоскости, лишь выраженная особым образом. Именно, будем рассматривать круг на обычной плоскости (рис. 1) и внутренность его, т. е. круг, за исключением ограничивающей его окружности, назовем «плоскостью». Точкой «плоскости» будет точка внутри круга. «Прямой» будем называть любую хорду (например, а, b, b`, MN) (с исключенными концами, т. к. окружность круга исключена из «плоскости»). «Движением» назовем любое преобразование круга самого в себя, которое переводит хорды в хорды.

Соответственно, равными называются фигуры внутри круга, переводящиеся одна в другую такими преобразованиями. Тогда оказывается, что любой геометрический факт, описанный на таком языке, представляет теорему или аксиому Лобачевского геометрия Иными словами, всякое утверждение Лобачевского геометрия на плоскости есть не что иное, как утверждение евклидовой геометрии, относящееся к фигурам внутри круга, лишь пересказанное в указанных терминах. Евклидова аксиома о параллельных здесь явно не выполняется, т. к. через точку О, не лежащую на данной хорде а (т. е. «прямой»), проходит сколько угодно не пересекающих её хорд («прямых») (например, b, b`). Аналогично, Лобачевского геометрия в пространстве может быть определена как геометрия внутри шара, выраженная в соответствующих терминах («прямые» — хорды, «плоскости» — плоские сечения внутренности шара, «равные» фигуры — те, которые переводятся одна в другую преобразованиями, переводящими шар сам в себя и хорды в хорды). Таким образом, Лобачевского геометрия имеет совершенно реальный смысл и столь же непротиворечива, как геометрия Евклида. Описание одних и тех же фактов в разных терминах или, напротив, описание разных фактов в одних и тех же терминах представляет характерную черту математики. Она ясно выступает, например, когда одна и та же линия задаётся в разных координатах разными уравнениями или, напротив, одно и то же уравнение в разных координатах представляет различные линии.

Практическая сторона геометрии

Название «геометрия» переводится с греческого, как «гео» — земля и «метрео» — мерить. Изначально геометрию использовали для разметки земли и других работ с землей. Но, оказалось, что сфера ее влияния безгранична.

Чтобы понять, зачем нам нужны знания по геометрии, просто оглянитесь вокруг: геометрия окружает нас в предметах разных форм. Взять хотя бы круг: его используют в искусстве, строительстве, технике. То же самое и с другими фигурами: чтобы сконструировать автомобиль или айфон, сшить одежду или построить дом — не обойтись без геометрии.

А еще геометрия помогает научиться рассуждать логически, искать связи и противоречия — полезный навык в диджитал-мире, когда информация окружает нас повсюду.

Вот, в каких профессиях пригодится геометрия: архитектор, айтишник, дизайнер, инженер, конструктор, строитель, smm-менеджер, декоратор, летчик, водитель, художник, проектировщик, астроном, спортсмен, музыкант и другие.

Почему изучать геометрию просто: мы видим объемный мир каждый день и регулярно прикасаемся к предметам, строим планы, размышляем и считаем в уме. В геометрии все знания подкреплены научными теориями — это помогает взаимодействовать с пространством по-другому, более осознанно.

Почему изучать геометрию сложно: некоторые правила придется учить наизусть.

Чтобы понять геометрию, двигайтесь от простого к сложному. Многие теоремы могут показаться очевидными. Но эта видимость может быть верной только для одного рисунка. Невозможно нарисовать все ситуации, ведь их их бесконечное множество

Именно поэтому важно доказать истину, чтобы никогда не сомневаться в ней

Фракталы

Подробнее об этом виде кривых мы писали тут. Однако в рамках разговора об эволюции представлений о кривых не упомянуть их невозможно. Классическим примером фрактала (фигуры со свойством самоподобия) является кривая Коха.

Свойство самоподобия означает, что фигура полностью или приближенно совпадает по форме с частью самой себя. В качестве примера можно провести кривую Коха:

В качестве нулевого «поколения» берем просто отрезок. На первом шаге его среднюю треть превращаем в правильный треугольник без основания, как бы выгибаем его. У нас получится четыре соединенных в кривую линию отрезка. На следующем шаге повторяем эту операцию с каждым из четырех отрезков. И так далее до бесконечности.

Наш подход с прямыми отрезками терпит здесь фиаско — вместо приближения к какой-то конечной длине сумма длин отрезков неограниченно растет.

Конечно, кривые, обладающие этим свойством, не исчерпываются самоподобными фигурами. Достаточно найти трещину на стене не самой простой формы: самоподобия в ней мы, как правило, не наблюдаем, и в то же время от одной ее «ветки» отходят новые, иной формы, и т. д.

История развития геометрии Интересные факты. «Школьная газета » Интересные факты о геометрии»

Интересные факты о геометрии.Слово «трапеция» произошло от древнегреческого слова «трапезион»(обозначает столик). также от данного слова произошли уже немногоподзабытые в обиходе слова, такие как «трапеза» и прочие родственныеему слова.Математика для древних греков была, прежде всего, геометрией.Поэтому над двери Академии, в стенах которой Платон учил своих учеников, висела надпись: «Пусть сюда не входит тот, кто не знает геометрии».Греческое слово «конос», обозначающее сосновую шишку, является словарной основой для такого термина как «конус», а известный в геометрии термин «линия» возник уже от латинского слова «линум» (что в переводе на русский язык означает «льняная нить»).Пирог разрезается всего тремя касаниями ножа на восемь равных долей. Причем, существует только два способа это сделать. Под треугольником Рёло понимают геометрическую фигуру, образованную пересечением 3 кругов одинакового радиуса D с центрами, находящимися в вершинах равностороннего треугольника, такой же по длине стороны. на основе треугольника Рёло было придумано сверло, позволяющее просверливатьпочти квадратные отверстия. В геометрии Лобачевского сумма углов треугольника всегда меньше 180. В геометрии Эвклида она всегда равна 180. В геометрии Римана сумма углов треугольника всегда больше 180.Если число 111 111 111 помножить на себя самого, то получится интересное число 12 345 678 987 654 321 (все числа сначала возрастают, а потом убывают по порядку).Английский математик Абрахам де Муавр в престарелом возрасте однажды обнаружил, что продолжительность его сна растёт на 15 минут в день. Составив арифметическую прогрессию, он определил дату, когда она достигла бы 24 часов — 27 ноября 1754 года. В этот день он и умер.Еще факты Знаете ли вы? Что Шарль Перро, автор «Красной Шапочки», написал сказку «Любовь циркуля и линейки»?   Что Наполеон Бонапарт писал математические труды и один геометрический факт называется «Задача Наполеона»?   Что Пифагор был победителем из кулачного боя на 58-х Олимпийских играх, проходивших в 548 году до н. э., а затем побеждал еще на нескольких Олимпиадах? Выполнил Меркулов Лев,Педагог Меркулова О.Р.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Акваплант
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: