Биография джона фон неймана

Принстонский университет, США

В 1930 году Нейман стал приглашенным лектором в Принстонском университете. Некоторое время спустя он начал работать над теорией колец операторов с целью разработки математической техники, подходящей для квантовых явлений. Работа заняла почти десятилетие, и теперь она известна как «алгебры фон Неймана».

В 1931 году он был назначен профессором. Теперь он начал писать серию статей, в которых внес фундаментальный вклад в квазиэргодическую теорию.

Однако как профессор математики он не пользовался большой популярностью у студентов. Это произошло потому, что они не могли угнаться за ним, и им было трудно следовать его плавным линиям мыслей. Он писал слишком быстро и стер это прежде, чем его ученики смогли скопировать.

В 1933 году в Принстоне был основан Институт перспективных исследований. Нейман стал одним из шести первых профессоров математики в институте и занимал эту должность на протяжении всей своей жизни. В том же году он стал соредактором «Анналов математики».

До 1933 года каждое лето он возвращался в Германию, где сохранял свою академическую позицию. Однако с усилением нацистов в Германии он счел благоразумным уйти в отставку и навсегда переехал в Принстон.

В 1935 году он стал соредактором Compositio Mathematica. Одновременно он также работал соредактором Annals of Mathematics и занимал обе эти должности до своей смерти.

В 1937 году он стал гражданином Соединенных Штатов Америки. Примерно в это же время он также преобразовал свое имя на английский язык в Джон и добавил фон Неймана как признак немецкого благородства.

С 1937 по 1939 год фон Нейман сосредоточился на теории решеток, в которой он провел абстрактное исследование размерности в дополненных модульных топологических решетках, а позже основал на ней область непрерывной геометрии.

Научная деятельность

Первым крупным трудом фон Неймана стала диссертация, описывающая новый подход к формализации теории множеств. Ученый сформулировал 2 способа избавления от парадокса Рассела, введя термины «аксиома основания» и «класс».

Аксиома основания подразумевала построение множеств снизу вверх и организацию последовательности, где каждое множество предшествовало другому или шло за ним. Для демонстрации отсутствия противоречий Джон применил понятие метода внутренней модели, которое стало основополагающим орудием в работе над теорией множеств.

Для описания 2-го способа исключения математического парадокса фон Нейман отождествил множество с понятием класса и продемонстрировал вероятность построения группы множеств, которые не принадлежат сами себе.

В статьях, выпущенных в конце 1920-х годов, фон Нейман отличился вкладом в эргодическую теорию, а затем перешел к вопросам квантовой механики и ее математического обоснования. Он написал ряд научных сочинений в этой области и доказал, что квантовые системы — это не что иное, как точки в гильбертовом пространстве, над которым расположены линейные операторы, состоящие из обычных физических величин.

Доказательство фон Неймана дало старт исследованиям, приведшим к утверждению, что квантовая физика либо нуждается в понятии реальности, либо должна включать нелокальность в явное нарушение специальной теории относительности.

Рассуждая о математических началах квантовой механики, Джон фон Нейман проанализировал так называемую теорию измерения и сделал вывод, что физическая вселенная может быть обусловлена универсальной волновой функцией.

Это подтолкнуло исследователя к открытию фундаментальных принципов функционального анализа, созданию теории ограниченных операторов и введению понятия «прямого интеграла», что принесло Джону мемориальную премию имени Бохера в 1938 году.

Одной из многочисленных заслуг венгерского математика стало доказательство «теоремы о минимаксе», необходимого элемента зарождавшейся теории игр. Ученый понял, что в играх с нулевой суммой присутствует пара стратегий, позволяющая каждому участнику минимизировать собственные максимальные потери. Игрок обязан учесть все существующие реакции противника и разыграть оптимальную стратегию, которая станет гарантом минимизации его максимального убытка.

Между 1937 и 1939 годами фон Нейман изучал теорию решеток, где объектом исследования являлись частично упорядоченные множества, в которых каждые 2 элемента имели наибольшую нижнюю границу и наименьшую верхнюю, и в процессе доказал следующую основную теорему представления.

Кроме того, фон Нейман вложился в развитие экономики, напечатав труды об интеллектуальном и математическом уровне этой дисциплины. Опираясь на результаты, Джон изобрел теорию двойственности в линейном программировании и стал автором первого внутреннего точечного метода, базировавшегося на системе Гордана.

Очередной заслугой Джона фон Неймана считается работа в сфере науки информатики, посвященная созданию и описанию архитектуры ЭВМ, где в основании лежало двоичное кодирование, однородность и адресуемость памяти, условный переход и последовательное программирование управления. Используя компьютеры первого поколения, Джон в сотрудничестве с Аланом Тьюрингом исследовал проблемы философии искусственного интеллекта, но в этом вопросе далеко не продвинулся.

В гидродинамике основным изобретением фон Неймана признан алгоритм определения искусственной вязкости, который помог в понимании феномена ударных волн. Ученый открыл классическое решение потока и применил компьютерное моделирование для баллистических исследований в этой области.

С конца 1930-х годов Джон стал главным специалистом по математике кумулятивных зарядов, консультировавшим вооруженные силы Соединенных Штатов. Являясь одним из создателей атомной бомбы, ученый разработал концепцию и дизайн взрывных линз, применяемых для сжатия плутониевого ядра оружия, которое вскоре было сброшено на Хиросиму и Нагасаки.

Будучи участником Манхэттенского проекта, фон Нейман входил в комитет по отбору целей атомной бомбы и расчетов, связанных с прогнозированием размеров взрывов и количества погибших людей. Математик, не расценивавший эту страницу биографии как позорную, стал очевидцем первых взрывных испытаний на полигоне вблизи армейского аэродрома Аламогордо под кодовым названием «Тринити».

В середине 1940-х годов Джон поддерживал идею конструкции водородной бомбы и вместе с теоретиком Клаусом Фуксом подал секретный патент на совершенствование методов и средств применения ядерной энергии.

Принцип построения и работы ЭВМ фон Неймана

Заносимые в память команды (программа) содержат информацию о необходимом действии и адреса требуемых данных. Также вводятся идентификатор ячейки для введения память результата (если нужно).

АЛУ отвечает за исполнение команды. Итог операции отправляется в память или на вывод. ВЗУ сходно с устройством вывода тем, что используется для недолгого хранения параметров. Только содержит информацию в непонятном для оператора формате. Исключительно для машины.

Если кратко, основной функцией АЛУ является поддержка незатейливых действий: арифметических, логических, перемещением данных. Еще анализируется результат. Решения по анализу принимаются УУ.

УУ предназначено для отправки указаний непосредственно отдельным деталям и получения от них подтверждений. Следит за очередностью выполнения команд и за их исполнением вообще.

Участие в Манхэттенском проекте и вклад в информатику

Будучи экспертом в математике ударных волн и взрывов, во время Второй мировой войны фон Нейман работал консультантом Лаборатории баллистических исследований (Army Ballistics Research Laboratory) Управления боеприпасов Армии США. По приглашению Оппенгеймера Фон Нейман был привлечён к работе в Лос-Аламосе над Манхеттэнским проектом начиная с осени 1943 года, где он работал над расчётами сжатия плутониевого заряда до критической массы путём имплозии.

Расчёты по этой задаче требовали больших вычислений, которые поначалу осуществлялись в Лос-Аламосе на ручных калькуляторах, потом — на механических табуляторах IBM 601, где использовались перфокарты. Фон Нейман, свободно разъезжая по стране, собирал информацию из разных источников о текущих проектах по созданию электронно-механических (Bell Telephone Relay-Computer, компьютер Mark I Говарда Айкена в Гарвардском университете использовался Манхеттенским проектом для расчётов весной 1944 г.) и полностью электронных компьютеров (ENIAC использовался в декабре 1945 года для расчётов по проблеме термоядерной бомбы).

Фон Нейман помогал в разработке компьютеров ENIAC и EDVAC, внёс вклад в развитие науки о компьютерах в своей работе «Первый проект отчёта о EDVAC», где представил научному миру идею компьютера с программой, хранимой в памяти. Эта архитектура до сих пор носит название архитектуры фон Неймана, и долгие годы реализовывалась во всех компьютерах и микропроцессорах.

После окончания войны фон Нейман продолжил работу в этой области, разрабатывая высокоскоростной исследовательский компьютер IAS-машину в Принстонском университете, который предполагалось использовать для ускорения расчётов по термоядерному оружию.

В честь Фон Неймана был назван компьютер JOHNNIAC, созданный в 1953 году в Корпорации RAND.

Основания математики

В конце девятнадцатого века аксиоматизация математики по примеру Начал Евклида достигла нового уровня точности и широты. Особенно сильно это было заметно в арифметике (благодаря аксиоматике Рихарда Дедекинда и Чарльза Сандерса Пирса), а также в геометрии (благодаря Давиду Гильберту). К началу двадцатого века было предпринято несколько попыток формализовать теорию множеств, однако в 1901 Бертраном Расселом была показана противоречивость наивного подхода, использовавшегося ранее (парадокс Рассела). Этот парадокс вновь подвесил в воздухе вопрос о формализации теории множеств. Проблема была решена двадцать лет спустя Эрнстом Цермело и Абрахамом Френкелем. Аксиоматика Цермело — Френкеля позволила конструировать множества, обычно используемые в математике, однако они не смогли явно исключить из рассмотрения парадокс Рассела.

В докторской диссертации в 1925 году фон Нейман продемонстрировал два способа, позволяющие исключить из рассмотрения множества из парадокса Рассела: аксиома основания и понятие класса. Аксиома основания требовала, чтобы каждое множество можно было сконструировать снизу вверх в порядке возрастания шага по принципу Цермело и Френкеля таким образом, что если одно множество принадлежит другому, то необходимо, чтобы первое стояло прежде второго, тем самым исключая возможность множеству принадлежать самому себе. Для того чтобы показать то, что новая аксиома не противоречит другим аксиомам, фон Нейман предложил метод демонстрации (впоследствии названный методом внутренней модели), который стал важным инструментом в теории множеств.

Второй подход к проблеме выражался в том, чтобы взять за основу понятие класса и определить множество как класс, который принадлежит некоторому другому классу, и одновременно с этим ввести понятие собственного класса (класса, который не принадлежит другим классам). В предположениях Цермело — Френкеля аксиомы препятствуют конструированию множества всех множеств, которые не принадлежат самим себе. В предположениях фон Неймана класс всех множеств, не принадлежащих самим себе, может быть построен, но это собственный класс, то есть он не является множеством.

С помощью этой конструкции фон Неймана аксиоматическая система Цермело — Френкеля смогла исключить парадокс Рассела как невозможный. Следующей проблемой стал вопрос о том, можно ли определить эти конструкции, или этот объект не подлежит улучшению. Строго отрицательный ответ был получен в сентябре 1930 года на математическом конгрессе в Кенингсберге, на котором Курт Гёдель представил свою теорему о неполноте.

Ввёл в математику классы, получившие название классов Шаттена — фон Неймана.

Личная жизнь

1 января 1930 года фон Нейман женился на Мариетте Кёвеси, изучавшей экономику в Будапештском университете. Вскоре после этого они переехали в США, где родилась их единственная дочь, Марина фон Нейман Уитман. Пара развелась в 1937 году.

Позже Марина выросла и стала заметным экономистом. В настоящее время она является профессором делового администрирования и государственной политики в Школе бизнеса Росса Мичиганского университета, а также в Школе государственной политики Джеральда Р. Форда.

В октябре 1938 года фон Нейман женился на Кларе Дан, ученом и новаторском программисте. Детей у пары не было. Они оставались женатыми до его смерти в 1957 году.

В 1955 году фон Нейману диагностировали рак, и его здоровье очень быстро ухудшилось. Несмотря на это, он продолжал работать и в 1956 году в эссе, написанном для книги Джеймса Ньюмана «Мир математики», защитил прикладную математику.

В последние дни его жизни, опасаясь, что он может раскрыть военные секреты под действием лекарств, была обеспечена военная безопасность.

Джон фон Нейман умер 8 февраля 1957 года в Армейском медицинском центре Уолтера Рида в Вашингтоне.

Помимо многочисленных математических формул, названных в честь фон Неймана, его наследие продолжает ряд наград и лекций, учрежденных в его честь.

Лунный ударный кратер, который находится на обратной стороне Луны, в северном полушарии, также был назван фон Нейманом в его честь.

В 2005 году он был изображен на самоклеющейся почтовой марке США стоимостью 37 центов, выпущенной Почтовой службой США.

В отличие от большинства математиков, фон Нейман лучше работал в хаотических условиях в жилых комнатах и ​​подобных местах, чем в своем кабинете, который был довольно уединенным. Он любил много общаться и регулярно развлекался дома.

Природа играет в кости

Фон Нейман неоднократно выражал озабо­ченность тем, что математика держится в стороне от экспоненциального роста проблем и идей в физических нау­ках, и стремился восстановить престиж и ведущую роль математики в формировании мышления современных физиков-теоретиков.

Цикл его работ по математическому обоснова­нию квантовой механики открыла статья «Об основаниях квантовой механики» (1927), написанная фон Нейманом совместно с Давидом Гильбертом и Лотаром Нордгеймом. В основу ее была положена лекция об успехах квантовой теории, про­читанная в зимний семестр 1926/27 года Гильбертом. Наиболее существенная часть математических формулировок и доказательств, приведен­ных в статье, принадлежала фон Нейману.

Статья Гильберта, Нордгейма и фон Неймана стала прологом к циклу из семи работ по математическому обос­нованию квантовой механики, выполненных фон Нейма­ном в 1927–1929 годах. В обобщенном варианте они были изложены в его монографии «Математические основы квантовой механики», вышедшей в 1932 году в знаменитой «желтой серии» издательства Шпрингера.

Оценивая через много лет значение книги фон Неймана для всего круга проблем, связанных с математическим обос­нованием квантовой механики, Станислав Улам писал: «Помимо огромной дидактической ценности этого труда, излагав­шего идеи новой квантовой теории в форме, отвечающей умонастроению математиков и способной пробудить их профессиональный интерес, он представляет собой вклад в науку, имеющий бесспорно первостепенное значение, если рассматривать его как рациональное изложение фи­зической теории, основанной, как первоначально считали физики, на отнюдь не тривиальных и далеко не очевидных соображениях».

 Статистическая природа квантово-механических утверждений, по фон Нейману, следует из первых принципов теории, в частности из представ¬ления квантово-механических величин операторами в гильбертовом пространстве состояний

По фон Нейману, состояния физических систем описы­ваются векторами в гильбертовом пространстве, а изме­римые физические величины (положение, импульс, энер­гия и т. д.) — действующими на эти векторы неограничен­ными эрмитовыми операторами. Операторная формулировка квантовой механики позво­лила фон Нейману подвести прочную основу под статисти­ческую интерпретацию квантово-механических утверждений. Исход измерения физической величины, производимого над системой, которая находится в определенном квантовом состоянии, по фон Нейману, описывается распределением вероятностей, зависящим от вектора этого состояния и спектрального разложения оператора измеряемой величи­ны.

Формула для распределения вероятностей результатов измерения — математический парафраз статистической ин­терпретации квантовой механики, предложенной в 1926 году Максом Борном. Именно эта формула послужила для фон Неймана толчком к построению всей квантовой механики на теоретико-вероятностной основе, осуществленному в работе, которая так и называлась: «Теоретико-вероятност­ное построение квантовой механики» (1927).

Значимость вклада, внесенного фон Нейманом в мате­матическое обоснование квантовой механики, тем более велика, что в «героический период» ее становления статисти­ческая интерпретация квантово-механических утверждений вызывала у многих физиков ностальгию по утраченному детерминизму. Они не верили в «бога, играющего в кости», как говорил Эйнштейн. «Классически» мыслящие физики надеялись, что и квантовая механика станет детерминистской теорией, если будут учтены «скрытые параметры», описыва­ющие состояние наблюдателя. Не случайно Макс Борн был удостоен Нобелевской премии за статистическую интерпретацию квантовой механики много позднее других созда­телей новой теории.

Статистическая природа квантово-механических утверждений, по фон Нейману, следует из первых принципов теории и, в частности, из представ­ления квантово-механических величин операторами в гильбертовом пространстве состояний.

Институт высших исследований в Прин­стоне

princeton.edu

Манхэттенский проект (1937–45)

Основной вклад фон Неймана в создание атомной бомбы заключался в создании концепции и конструкции взрывных линз, которые были необходимы для сжатия плутониевого ядра атомной бомбы Толстяк. которая позже была сброшена на Нагасаки.

Участник Манхэттенского проекта в Лос-Аламосе, штат Нью-Мексико, фон Нейман в 1944 году показал, что увеличение давления в результате отражения ударной волны взрыва от твердых объектов было гораздо большим, чем предполагалось ранее, в зависимости от угла ее падения. Это открытие привело к решению взорвать атомные бомбы в нескольких километрах над целью. Фон Нейман присутствовал при первом испытании «Тринити» 16 июля 1945 года в пустыне Невада во время первого успешного испытания атомной бомбы.

Джон фон Нейман и компьютеры

Джон фон Нейман в 1946 г заложил основы учения об архитектуре вычислительных машин, когда подключился к созданию первого в мире лампового компьютера ЭНИАК. В процессе работы над ЭНИАКом в Институте Мура в Пенсильванском Университете во время многочисленных дискуссий фон Неймана с его коллегами Джоном Уильямом Мокли, Джоном Эккертом, Германом Голдстайном и Артуром Бёрксом возникла идея более совершенной машины под названием EDVAC. Исследовательская работа над EDVAC продолжалась параллельно с конструированием ЭНИАКа. (об этом в отдельной статье)

Личность

Несмотря на свои многочисленные назначения, обязанности и обширные исследовательские работы, фон Нейман вел довольно необычный для математика образ жизни.

Его первая жена Клара говорила, что он умеет считать все, кроме калорий.

Фон Нейман также любил идиш и грязные шутки

Он был некурящим, но в IAS поступали жалобы на то, что он регулярно проигрывал на граммофоне в своем офисе чрезвычайно громкую немецкую маршевую музыку, отвлекая внимание коллег, в том числе Альберта Эйнштейна. Фактически, фон Нейман утверждал, что делал одни из своих лучших работ в шумной, хаотичной обстановке, например, в гостиной своего дома с включенным телевизором

Несмотря на то, что он был плохим водителем, он любил водить машину, часто читая книги за рулем, что приводило к различным арестам и авариям.

Летом 1954 года фон Нейман ушиб левое плечо при падении. Боль не проходила, и хирурги поставили диагноз: костная форма рака. Предполагалось, что рак фон Неймана мог быть вызван радиоактивным облучением при испытании атомной бомбы в Тихом океане или, может быть, при последующей работе в Лос-Аламосе, штат Нью-Мексико (его коллега, пионер ядерных исследований Энрико Ферми, умер от рака желудка на 54-м году жизни). Через несколько месяцев после постановки диагноза фон Нейман умер в тяжёлых мучениях. Когда он лежал при смерти в госпитале Вальтера Рида, он попросил встречи с католическим священником.

Фон Нейман похоронен на Принстонском кладбище в Принстоне, штат Нью-Джерси, вместе со своими друзьями на всю жизнь Юджином Вигнером и Куртом Гёделем .

Спасибо за внимание!

Все фото взяты с Яндекса в свободном доступе

Аналитическое обоснование работы ЭВМ

Принципы функционирования компьютера фон Неймана предполагали раздельную машинную и программную части. При смене программ достигается безграничная функциональность системы. Ученому удалось предельно рационально аналитически определить основные функциональные элементы будущей системы. Как элемент контроля он предполагал в ней обратную связь. Ученый же и дал название функциональным узлам устройства, ставшего в будущем ключом к информационной революции. Итак, воображаемая ЭВМ фон Неймана состояла из:

Машинной памяти, или запоминающего устройства (сокращенно — ЗУ);

Логико-арифметического устройства (АЛУ);

Управляющего устройства (УУ);

Устройств ввода-вывода.

Даже пребывая в другом столетии, мы можем воспринять достигнутую им блестящую логику как прозрение, как откровение. Однако так ли на самом деле это было? Ведь вся вышеупомянутая структура, по своей сути, стала плодом работы уникальной логической машины в человеческом обличье, имя которой — Нейман.

Математика стала его главным инструментом. Великолепно о подобном феномене написал, к сожалению, уже покойный классик Умберто Эко. «Гений всегда играет на одном элементе. Но играет настолько гениально, что в эту игру включаются все остальные элементы!»

Личная жизнь

В течение 1927-1929 годов, после представления теории квантовой механики, Нейман посещал многочисленные конференции и коллоквиумы. К 1929 году он написал около 32 работ на английском языке. Эти работы были хорошо структуризированны для того, чтобы другие математики могли включать работы Неймана в свои теории. К этому времени он стал знаменитостью в академических кругах благодаря своим творческим и инновационным теориям. К концу 1929 года Нейману предложили место преподавателя в Принстонском университете. В это же время он женился на Мариэтте Кёвеши, подруге детства. В 1935 году у них родилась дочь, которую назвали Мариной. Брак Джона и Мариэтты распался в 1936 году. Мариэтта вернулась назад в Будапешт, а Нейман некоторое время путешествовал по Европе, а затем вернулся в США. Во время поездки в Будапешт он познакомился с Кларой Дэн, на которой женился в 1938 году.

Теория автоматов и кибернетика

В конце 1940-х, накопив колоссальный практиче­ский опыт в создании быстродействующих вычислитель­ных машин, фон Нейман приступил к созданию общей ма­тематической (или, как предпочитал называть ее сам фон Нейман, логической) теории автоматов.

В планы фон Неймана входило создать систематическую теорию, математическую и логическую по форме, которая упорядочила бы понятия и принципы, касающиеся струк­туры и организации естественных и искусственных систем, роли языка и информации в таких системах, программиро­вания и управления такими системами.

Норберт Винер — американский математик, один из основоположников кибернетики и теории искусственного интеллекта

Wikipedia

Различия между теорией автоматов фон Неймана и ки­бернетикой Винера несущественны и обусловлены скорее личным вкусом и опытом их создателей, чем принципиаль­ными соображениями

Теория автоматов фон Неймана, принимавшего активное участие в разработке и создании современных быстродействующих ЭВМ первого поколения, основное внимание уделяет цифровым вычислительным машинам и дискретной математике (главным образом, ком­бинаторике и логике). Кибернетика Винера, принимав­шего в годы войны участие в разработке прибора управле­ния артиллерийским зенитным огнем, сосредоточивает вни­мание на следящих системах и непрерывной математике (классическом анализе)

Винер всячески подчеркивает важность обратной связи для управления и целенаправ­ленного поведения; фон Нейман, по существу, используя обратную связь и в конструкции машин, и в блок-схемах программ, не считает необходимым специально подчеркивать это.

Винер и фон Нейман находились под взаимным влия­нием и, как показывает, например, рецензия фон Ней­мана на книгу Винера «Кибернетика, или Управление и связь в животном и машине», были великолепно осведом­лены о сильных и слабых сторонах каждого подхода.

Еще в период работы над созданием вычислительной машины EDVAC фон Нейман произвел сравнение некото­рых элементов живых существ и искусственных автоматов. Более отчетливо цели и задачи такого сравнения были сформу­лированы им в начале знаменитой статьи «Общая и логиче­ская теория автоматов».

 Сравнивая особенности функционирования естествен¬ных и искусственных автоматов, фон Нейман обратил вни¬мание на то, что живые существа, в частности челове¬ческий мозг? работают с непостижимой надежностью, несмотря на сравнительно низкую надежность их деталей

Сравнивая особенности функционирования естествен­ных и искусственных автоматов, фон Нейман обратил вни­мание на то, что живые существа, в частности челове­ческий мозг, работают с непостижимой надежностью, не­смотря на сравнительно низкую надежность их деталей. Можно ли смоделировать эту особенность живых организ­мов при помощи искусственных автоматов? Можно ли, и если можно, то как, построить надежный автомат из не­надежных компонент? Можно ли понизить порог ошибки до заданного значения? Эти вопросы были разобраны в статье фон Неймана «Вероятностная логика и синтез надеж­ных организмов из ненадежных компонент», написанной на основе пяти лекций, прочитанных в январе 1952 года в Кали­форнийском технологическом институте.

Весной 1955-го Нейман переехал из Принстона в Вашингтон и взял отпуск без сохранения содержания в Инсти­туте высших исследований, где он состоял профессором в Математической школе с 1933 года. Через три месяца при­вычной деятельной и напряженной жизни у него появились сильные боли в левом плече, и после операции был поставлен диагноз: костная форма рака. Тем не менее он лихорадочно работал.

К январю 1956 года Нейман оказался прикованным к инвалидному креслу, но продолжал принимать посе­тителей, требовал, чтобы его ежедневно привозили в служебный кабинет, и продолжал работать над рукописью.

В начале апреля Неймана положили в госпиталь Уолтера Рида, из которого он так и не вышел до самой смерти, наступившей 8 февраля 1957 года. Незаконченная рукопись его последней книги «Вычислительная машина и мозг» отправилась вместе с ним в госпиталь, где Нейман предпринял еще несколько попыток поработать над ней.

Статья написано на основе материалов книги Ю. А. Данилова «Джон фон Нейман»

Заключение

Фон Нейман привнес неоценимые новшества в создание машин электронного класса. Благодаря придуманной им схеме, улучшенный калькулятор (каковым являлся ЭНИАК) превратился со временем в инструмент обработки любой информации. При этом их «железный» состав изменился слабо. Электронные лампы, например, заменили на полупроводники.

УУ и АЛУ скомпоновали в моноблочный центральный процессор. Значительные качественные изменения претерпело ОЗУ. Возрос объем. Гораздо удобней стали аппараты ввода и вывода. Но принципиальных подвижек пока нет.

С другой стороны, заслуги представляются несколько преувеличенными. Основы «принципов» рождались в результате дискуссий с коллегами. Но в опубликованных итогах оказалась одна фамилия. Но безусловна роль фон Неймана как систематизатора. А на титул первооткрывателя он и не претендовал.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Акваплант
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: